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Fig. 5. The charactenstic impedance of configuration 4 as a function of the
truncation index N3 of the vector potentials and with the truncation index
M of the power series as a parameter, calculated by the projection method.
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Fig. 6. The characteristic impedance of configuration 7 as a function of the
truncation 1ndex N3 of the vector potentials and with the truncation index
M of the power series as a parameter, calculated by the projection method.

error near the edge, so that the electromagnetic field (using the
same truncation indices) is approximated much better by the
projection method than by the MMT.

For very large metallization thicknesses (configurations 5 and
6: t=1 mm, nearly twice the substrate height), both the projec-
tion method and the MMT fail. Considering a more realistic
configuration, for example, a quadratic metal strip on a GaAs
substrate of the type used in monolithic microstrip integrated
circuits (MMIC) (configuration 7: €, =12.8,2e = 600 pm, ¢ = 400
pm, t=w=2d=5pum, h=a=100 pm, f =10 GHz, (k, /k,)*
= 6.4), a good convergence behavior is obtained, whereas the
conventional MMT delivers no results again within the ordinate
range (Fig. 6). Using the projection method, numerical problems
occur for a truncation index M =10.

IV. CONCLUSIONS

The application of a projection method, based on an idea by
Jansen [1], delivers good results for the characteristic impedance
of microstrip configurations with finite metallization thickness. It
should be emphasized that the procedure of the projection method
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is a general one which can be applied to various boundary value
problems. ‘
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Parametric Equations for Surface Waves in
Dielectric Siab

JEFFREY C. HANTGAN, MEMBER, IEEE

Abstract —For the dielectric slab it is shown that 1) the dispersion curve
for the nth surface wave can be found using parametric equations in which
the normalized inside wavenumber K., and the mode number are the
parameters, 2) the dispersion curve for the nth surface wave mode can also
be found by using parametric equations in which the mode number and a
modified wavenumber x’ with common domain [0, 7 /2] are the parameters,
and 3) all TE or all TM dispersion curves for surface waves are related to
each other by a simple algebraic equation using the mode numbers and the
normalized propagation constants K, and § as the variables.

I. FUNDAMENTAL EQUATIONS

Presently, dispersion curves for surface waves in dielectric slab
are obtained using either a graphical or a computer technique [1],
[2]. These techniques are unnecessary since the dispersion curves
can be obtained much more easily using parametric equations. In
addition, these graphical or computer techniques obscure the
simple algebraic relation between two different TE or two differ-
ent TM surface waves. This simple algebraic relation can be used
to express the mth surface wave in terms of the nth surface wave
propagation constants.

The normalized dispersion equations (normalized w.r.t. the
slab width 24d) for surface waves in dielectric slab are

K. tanK , =8K,,
K, ctnK,=—0K,

(1a)
(1b)
where 8 =1 for TE modes, or 8§ =¢, /¢, (the ratio of the relative

permittivities) for TM modes [1]-[3]. Since the value of K, must
be positive, K, lies in the range

(symmetric modes)

(antisymmetric modes)
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where the mode number #n is even for symmetric modes and odd
for antisymmetric modes. The normalized wavenumbers K, and
K, are related to the normalized propagation constants § and
K, through the following:

K3 =xK§ -~ p?

(3a)
(3b)

where « is the ratio of the relative permittivities, ¢, /e,. Note
that the normalized variables K ;, K,,, B, and K, equal their

X

unnormalized value multiplied by half the slab width.

Ko =82 -K§

II. FORMULATIONS

Rearranging (3) yields
K2 K2
Ki=—"—|(1+—=
0 (x—1) l: K3

K3 K2
TS 14— |
A ("‘1)[ Kszl

Using standard reduction formulas for the tangent and cotan-
gent functions, (la) and (1b) are combined into the following
single equation:

(4a)

(4b)

7
tan(x’+n—)
2 K2
'= =9 5
tan x ( , W) X, (5
—ctn| X'+ n—

Here the range of x’ is 0 < x’ < 7/2,8 =1 for TE modes or
8 =¢, /¢, for TM modes, and n=0,2,4, - - - for symmetric modes
(upper equation in (5)) while n=1,3,5,--- for antisymmetric
modes (lower equation in (5)). Note that the wavenumber K,
equals x’+ n(m/2). Substituting (5) into (4a) and (4b) results in

, ar\2 tan® x’
X (x +I’l§) 1+——8—2'-

KO = (K—l) (6a)
(x’+ n§)2(1+ amx tasnzzx’)
A= (x—1) (6b)

Equations (6a) and (6b) are parametric equations where the
modified wavenumber x’ is the parameter with a common do-
main [0, 7/2]. These equations can easily be used to plot any
dispersion curve for the nth TE or TM mode of dielectric slab. A
curve is determined for a particular mode by picking an ap-
propriate value for the mode number » and varying the value of
x’ from zero to = /2.

Dividing (6b) by (6a) and taking the square root results in

B 82 + k tan? x” |12
Ko_ 8% +tan® x’

(N

Equation (7) represents the normalized propagation constant or
the effective guided mode refractive index. This equation is a
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function of x’ and is independent of the mode number n.
Clearly, a particular value of x’ iesults in the same normalized
propagation constant for all TE modes or for all TM modes. This
result can be used to determine the propagation constants needed
to produce a desired effective guided mode index. Equation (7)
would be solved for x’, and this value of x’ would then be used
in (6) along with the appropriate mode number n.

Equation (6) can also be used to show that the dispersion
curves for two different TE modes or two different TM modes
are related by a simple algebraic equation. Let K, and B,
represent the known propagation constants for the nth TE or
TM mode, and let K, and B, be the desired propagation
constants for the mth TE or TM mode. If x’ is a constant, then
(6) yields

, Lg
Ko, - i:n_z_ =& (8)
K., x'+ m% B

Rearranging (8) with the aid of (3) yields

(chg"—,an)l/2+(m - n);

Ky = (KK(% ~ 132)1/2 Ky, (92)
(KK(?"— ,8,,2)1/2+(m - n)%
e e ™

This simple algebraic equation relates all TE or all TM dispersion
curves using only the mode numbers and the propagation con-
stants. Therefore, given the dispersion curve for the nth mode,
the dispersion curve for the mth mode can be obtained by
employing (9) rather than resolving the dispersion equations (1a)
and (1b). It is also observed that the relation between 8,, and B,
is the same as the relation between K, and K, .

III. CONCLUSIONS

Parametric equations have been developed to determine the
dispersion curves of surface waves in dielectric slab. This method
is more convenient to apply than either a graphical or a computer
technique. In addition, it has been shown that any two TE modes
or any two TM modes are related by a simple algebraic equation.
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