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Fig. 5. The characteristic impedance of configuration 4 as a function of the
truncation index N3 of the vector potentials aud with the truncation index

M of the power series as a parameter, calculated by the projection method.
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Fig. 6. The characteristic impedance of config,uratlon 7 as a function of the

truncation index N3 of the ‘vector potentials-and with the truncation index

M of the power series as a parameter, calculated by the projection method.

error near the edge, so that the electromagnetic field (using the

same truncation indices) is approximated much better by the

projection method than by the MMT.

For very large metallization thicknesses (configurations 5 and

6: t=1 mm, nearly twice the substrate height), both the projec-

tion method and the MMT fail. Considering a more rerdistic

configuration, for example, a quadratic metal strip on a GRAS

substrate of the type used in monolithic microstrip integrated

circuits (MMIC) (configuration 7: c, =12.8,2 e = 600 pm, c = 400

pm, t=w=2d=5 pm, h=a=100 pm, f=10 GHz, (kz/kO)2

= 6.4), a good convergence behavior is obtained, whereas the

conventional MMT delivers no results again within the ordinate

range (Fig. 6). Using the projection method, numerical problems

occur for a truncation index M =10.

IV. CONCLUSIONS

The application of a projection method, based on an idea by

Jansen [1], delivers good results for the characteristic impedance

of microstrip configurations with finite metrtllization thickness. It

should be emphasized that the procedure of the projection method

is a general one which can be applied to vtious boundary value

problems.
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Parametric Equations for Surface Waves in

Dielectric Slab

JEFFREY C. HANTGAN, MEMBER,IEEE

Abstract — For the dielectric slab it is shown that 1) the dkpersion cnrve

for the n th snrface wave can be found using parametric equations in which

the normalized inside wavenumber K~l and the mode number are the

parameters, 2) the dispersion curve for the n th surface wave mode can also

be found by using parametric equations in which the mode number and a

modified wavenumber x‘ with common domain [0, n/2] are the parameters,

and 3) an TE or all TM dispersion curves for surface waves are related to

each other by a simple algebraic equation using the mode numbers and the

normalized propagation constants KO and /3 as the variables.

I. FUNDAMENTAL EQUATIONS

Presently, dispersion curves for surface waves in dielectric slab

are obtained using either a graphicaf or a computer technique [1],

[2]. These techniques are unnecessary since the dispersion curves

can be obtained much more easily using parametric equations. In

addition, these graphical or computer techniques obscure the

simple algebraic relation between two different TE or two differ-

ent TM surface waves. This simple algebraic relation can be used

to express the m th surface wave in terms of the n th surface wave

propagation constants.

The normalized dispersion equations (normalized w.r.t. the

slab width 2 d ) for surface waves in dielectric slab are

(symmetric modes) (la)

KY, ctn KX1 = - 8KX2 (antisymmetric modes) (lb)

where 8 = 1 for TE modes, or 8 = C,/c ~ (the ratio of the relative

permittivities) for TM modes [1]–[3]. Since the value of KX2 must

be positive, K.Kl lies in the range

n;< Kyl<(n+l); ,n=o,l,2, . . . (2)
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where the mode number n is even for symmetric modes and odd

for antisymmetric modes. The normalized wavenumbers KX. and

K,,z are related to the normalized propagation constants ~ and

K. through the following:

where ~ is the ratio of the relative permittivities, c, /(0. Note

that the normalized variables KX1, Kyz, ~, and K. equal their

unnormalized value multiplied by half the slab width.

II. FORMULATIONS

Rearranging (3) yields

(4a)

(4b)

Using standard reduction formulas for the tangent and cotan-

gent functions, (la) and (lb) are combined into the following

single equation:

H()tan x’+ n;
Kxz

ta’’~’=

()
=&T. (5)

–ctn x’+ n;
xl

Here the range of x‘ is 0< x’< w/2,8 = 1 for TE modes or

8 = c, /{0 for TM modes, and n = 0,2,4, . . . for symmetric modes

(upper equation in (5)) while n =1,3,5,... for antisymmetric

modes (lower equation in (5)). Note that the wavenumber KX1

equals x‘ + n ( 7r/2). Substituting (5) into (4a) and (4b) results in

K,=(X’+”:)2(1+=)
o

(K-1)
(6a)

T’( )( %tan’ x‘
X’+n — l+—————

2 82D’= )

(K-1)
(6b)

Equations (6a) and (6b) are parametric equations where the

modified wavenumber x’ is the parameter with a common do-

main [0, Tr/2]. These equations can easily be used to plot any

dispersion curve for the rr th TE or TM mode of dielectric slab. A

curve is determined for a particular mode by picking an ap-

propriate value for the mode number n and varying the value of

x’ from zero to m/2.

Dividing (6b) by (6a) and taking the square root results in

Equation (7) represents the normalized propagation constant or

the effective guided mode refractive index. This equation is a

function of’ x‘ and is independent of the mode number n.

Clearly, a particular value of x’ ,esults in the same normalized

propagation constant for rdl TE modes or for all TM modes. This

result can be used to determine the propagation constants needed

to produce a desired effective guided mode index. Equation (7)

would be solved for x’, and this vahte of x’ would then be used

in (6) along with the appropriate mode number n.

Equation (6) can also be used to show that the dispersion

curves for two different TE modes or two different TM modes

are related by a simple algebraic equation. Let Kon and ~.

represent the known propagation constants for the n th TE or

TM mode, and let Kom and ~~ be the desired propagation

constants for the m th TE or TM mode. If x’ is a constant, then

(6) yields

-[ I
r

Kon X’+ n—
2 B.J1

K. = 7?
m x’+ m— A? “

2

Rearranging (8) with the aid of (3) yields

(8)

(9a)

(9b)

This simple algebrrsic equation relates all TE or all TM dispersion

curves using only the mode numbers and the propagation con-

stants. Therefore, given the dispersion curve for the n th mode,

the dispersion curve for the m th mode can be obtained by

employing (9) rather than resolving the dispersion equations (la)

and (lb). It is also observed that the relation between /3~ and /3~

is the same as the relation between Kom and Ken.

III. CONCLUSIONS

Parametric equations have been developed to determine the

dispersion curves of surface waves in dielectric slab. This method

is more convenient to apply than either a graphical or a computer

technique. In addition, it has been shown that any two TE modes

or any two TM modes are related by a simple algebraic equation.
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